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Answer all questions on this exam 

 

1. A crankshaft-piston mechanism is shown in Fig.Qx and is driven by an electric motor 
inputting a torque T at point A. At the instant shown link AB is rotating clockwise at a 
constant angular velocity of ωAB=33rad/sec and it is known that γ=15o and δ=45o. It is also 
given that AB=40mm and BC=150mm. The piston’s mass is equal to 0.3kg and it can be 
considered as a particle. Gravitational acceleration is g=9.81m/sec2. Link AB has mass 
mAB=0.1kg while link BC is of negligible mass. The friction coefficient between the piston 
and the chamber walls is equal to μ=0.1.  

 
FIGURE Q1 

 
a) This is a common slider-crank mechanism, having a single degree of freedom. +2 
b) The velocity at point B is perpendicular to AB and has a magnitude: 

vB= ωAB*AB=1.32 m/s  +1 

 +1 
c) Resolving perpendicularly to the 2nd unknown which is the velocity of point C should give us enough information to 
solve for ωBC. According to the figure below we have: 
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 +1 
vC=vB+vCB  +1 

Therefore: vCy=vBy+vCBy=vBcos(γ)+vCBcos(90-δ+90)= vBcos(γ)+ ωBCBCcos(90-δ+90) therefore  
ωBC=- vBcos(γ) / BCcos(90-δ+90) = 12.02 rad/s  +3 
 

d)   
+1 for BC, +2 for AB, +3 for piston 

 

 

e) Point B has only a normal acceleration component: aB= ωAB
2*AB=43.6 m/sec^2 as shown below. +4 

 
aBx=aBcos(90-γ)=11.27 m/sec^2    
aBy=aBcos(90-γ-90)=42.07 m/sec^2    
 
 
f) According to Chasles’ theorem: aC=aB+aCBn+aCBt +1 

 
We choose to solve the problem by resolving the above acceleration equation perpendicularly to the 2nd unknown 
which is aCBt 
aCBn=ωBC

2*BC=21.68 m/sec^2   +1 

Resolving the Chasles’ equation towards aCBn gives 
aCcos(δ+180)=aBcos(γ+δ+180)+aCBn+0   +3 
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Therefore aC=(aBcos(γ+δ+180)+aCBn) / cos(δ+180) = -0.73m/s2 accelerating towards the left hand side. 
 

g) We can easily compute from the piston’s FBD: Fwc=mcg=2.94N, Facc=mc*ac= -0.22N and Ffr=μ*( Fwc-
FABcos(90-δ) )  +2 Therefore: 
ΣFx:  FABcos(δ)-Facc-Ffr=0 therefore FABcos(δ)-Facc- μ*( Fwc-FABcos(90-δ) ) =  

=FABcos(δ)-Facc- μ*Fwc – μ*FABcos(90-δ)  +2 
 FAB (cos(δ) – μ*cos(90-δ) ) -Facc- μ*Fwc =0  and 

FAB= [Facc + μ*Fwc ] /  (cos(δ) – μ*cos(90-δ) ) = 0.12N.   +2 
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2. The system in figure 1is subjected to a unit step input at t=0. If 𝐺𝑝(𝑠) =
1

4𝑠+10
 determine: 

 

 
FIGURE Q2.1 

 

a. The steady state error as 𝑡 → ∞. 

(3 marks) 

Solution: For an input 𝑋𝑖(𝑠) =
1

𝑠
, 𝑋𝑜(𝑠) =

1

𝑠
(

1

4𝑠+10
) 

Partial fractions give 𝑋𝑜(𝑠) =
1

𝑠
(

1

4𝑠+10
) =

0.1

𝑠
−

0.4

4𝑠+10
 

Inverse Laplace transforms then give 
𝑥𝑜(𝑡) = 0.1(1 − 𝑒−2.5𝑡) 

And the steady state error is given by: 

lim
𝑡→∞

(𝑥𝑖(𝑡) − 𝑥𝑜(𝑡)) = 1 − 0.1(1 − 𝑒−2.5𝑡) = 0.9 

The same answer can be obtained using the final value theorem: 

lim
𝑠→0

𝑠(𝑋𝑖(𝑠) − 𝑋𝑜(𝑠)) = 𝑠 (
1

𝑠
−

1

𝑠
(

1

4𝑠 + 10
)) = 0.9 

b. The time taken for the system to be at 95% of the final (steady state) level. 

(7 marks) 
Solution: From the time domain solution in part (a): 

𝑥𝑜(𝑡) = 0.1(1 − 𝑒−2.5𝑡) 
1 − 𝑒−2.5𝑡 = 0.95 when 𝑒−2.5𝑡 = 0.05 

−2.5𝑡 = ln 0.05 = −3.00 
𝑡 = 1.20 

This system is integrated with a feedback controller as shown in figure 2.  

 
c. What is the transfer function 

𝐶(𝑠)

𝑅(𝑠)
 of the system in terms of 𝐺𝑐(𝑠) and 𝐺𝑝(𝑠)? 

(4 marks) 

Solution: 𝐶(𝑠) = (𝑅(𝑠) − 𝐶(𝑠)) (𝐺𝑐(𝑠)𝐺𝑝(𝑠)) 

𝐶(𝑠)

𝑅(𝑠)
=

𝐺𝑐(𝑠)𝐺𝑝(𝑠)

1 + 𝐺𝑐(𝑠)𝐺𝑝(𝑠)
 

Note to moderator: Students may derive or quote this result as it will be familiar to most from the 

example sheets and lectures. 

d. For 𝐺𝑐(𝑠) = 3𝑠 + 𝑘, find the value of k that reduces the steady state error when the 

system is subject to a unit step input to 5%. 

(4 marks) 

Xo(s) 
   

Xi(s) 
   Gp(s) 

  

𝑅(𝑠) 
𝐺𝑝(𝑠) 

𝐶(𝑠) + 

− 

𝐺𝑐(𝑠) 
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Solution: Overall transfer function for the system:  

𝐶(𝑠)

𝑅(𝑠)
=

3𝑠 + 𝑘
4𝑠 + 10

1 +
3𝑠 + 𝑘

4𝑠 + 10

=
3𝑠 + 𝑘

3𝑠 + 𝑘 + 4𝑠 + 10
=

3𝑠 + 𝑘

7𝑠 + (10 + 𝑘)
 

Unit step response (i.e. 𝑅(𝑠) =
1

𝑠
) can be found using the final value theorem: 

lim
𝑠→0

𝑠(𝐶(𝑠)) = 𝑠 (
1

𝑠
(

3𝑠 + 𝑘

7𝑠 + (10 + 𝑘)
)) =

𝑘

10 + 𝑘
 

The error as t tends to infinity is given by: 

𝑒(𝑡) = 1 − lim
𝑠→0

𝑠(𝐶(𝑠)) = 1 −
𝑘

10 + 𝑘
=

10

10 + 𝑘
 

And for the error to be 5%, the value of k must be 190. 
10

10 + 𝑘
= 0.05 =

1

20
 

200 = 10 + 𝑘 
𝑘 = 190 

To improve the system response further, a PID controller is implemented for which: 

𝐺𝑐(𝑠) =
3𝑠2 + 𝑘𝑠 + 2

𝑠
 

e. What is the effect on the steady state error for a unit step input for k= 10? The 

plant transfer function 𝐺𝑝(𝑠) =
1

4𝑠+10
. 

(4 marks) 

Solution:  

𝐶(𝑠)

𝑅(𝑠)
=

𝐺𝑐(𝑠)𝐺𝑝(𝑠)

1 + 𝐺𝑐(𝑠)𝐺𝑝(𝑠)
=

(
3𝑠2 + 𝑘𝑠 + 2

𝑠
) (

1
4𝑠 + 10

)

1 + (
3𝑠2 + 𝑘𝑠 + 2

𝑠
) (

1
4𝑠 + 10

)
 

𝐶(𝑠)

𝑅(𝑠)
=

3𝑠2 + 𝑘𝑠 + 2

4𝑠2 + 10𝑠 + 3𝑠2 + 𝑘𝑠 + 2
=

3𝑠2 + 𝑘𝑠 + 2

7𝑠2 + (𝑘 + 10)𝑠 + 2
 

K=10 so  
𝐶(𝑠)

𝑅(𝑠)
=

3𝑠2 + 10𝑠 + 2

7𝑠2 + 20𝑠 + 2
 

The steady state error is therefore 

𝑒(𝑡) = 1 − lim
𝑠→0

𝑠(𝐶(𝑠)) = 1 − lim
𝑠→0

𝑠 (
1

𝑠
(

3𝑠2 + 10𝑠 + 2

7𝑠2 + 20𝑠 + 2
)) = 0 

The effect of the PID controller is therefore to eliminate the steady state error. 

 

f. What is the range of values of k for which the system will be stable?  

(4 marks) 
Solution: 

Note to moderator: I would expect many of the weaker students to go straight from the denominator 

(7𝑠2 + (𝑘 + 10)𝑠 + 2)of the transfer function to the Routh-Hurwitz criterion and then to show that 

the system is stable when k>-10 even though this is not strictly necessary – the system is stable for 

all k>-10 recognising that the denominator of the transfer function corresponds to the Laplace 

transform pair: 

𝜔

√1 − 𝛾2
𝑒−𝛾𝜔𝑡 sin (𝜔𝑡√1 − 𝛾2)

ℒ
→

𝜔2

𝑠2 + 2𝛾𝜔𝑠 + 𝜔2
 

For any 𝛾 > 0 the system will be stable, hence k>-10. (5 marks) 

 
g. Figure Q2.3 shows the root locus for a system with the overall transfer function  

 

𝐺(𝑠) =
𝜔2

𝑠2 + 2𝛾𝜔𝑠 + 𝜔2
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Describe the system behaviours you would expect to see in response to a step input for 

the roots a, b, c and d in the graph. 

[4] 

 
Figure Q2.3 

Solution: 
The pair of roots at (a) are unstable – the system will oscillate and the oscillations will 
increase in magnitude with time. 
The pair of roots at (b) are underdamped  – the system will oscillate and the oscillations will 
decay with time and the system will reach a stable steady state value. 
The root at (c) is critically damped. The system will not oscillate or overshoot and will reach 
a stable value rapidly. 
The roots at (d) are overdamped. The system will respond more slowly to the input and will 
take longer to reach 95% of the steady state value. 
Mark scheme: ½ mark for the correct term (unstable, underdamped, critically damped, 
overdamped) and ½ mark for the description, key terms are underlined although 
paraphrases will be accepted. 
  

root 1 Root 2

𝜔 

𝜔 −𝜔 

−𝜔 
𝑎 

𝑎 

× 

× 
× 

× 
× 

× 

𝑏 

𝑏 

𝑐 
× 

𝑑 𝑑 

𝑅𝑒 

𝐼𝑚 
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1. Figure Q3.1 shows a rigid beam AD with moment of inertia Io about the pivot at point 
B. The beam is supported at D by a vertical spring having stiffness k and at A by a 
damper having damping coefficient c. θ denotes the angular displacement of the beam 
about the horizontal equilibrium state and is assumed positive in the clockwise 
direction as shown. All displacements and rotations in this system are assumed to be 
small. 

  

 
FIGURE Q3.1 

 
Io = 0.5 kg m2 

k = 1000 N/m 
c = 10 Ns/m 
L1 = 1 m 
L2 = 0.5 m 
 

a) Draw the Free Body Diagram for this system. This or ones with the circle are both acceptable.  [3] 
 
Don’t forget the spring and damper are linear, so in the FBD below they show as linear forces, but when 
transferring to EOM in part b) they’ll need to become torques.  

 or   
 

b) Derive the equation of motion for rotation of the beam, θ(t), about the pivot A.    [3] 
 
Relationships for linear displacements at springs to rotational displacements (students may have included 
this in part A). 

𝑥𝐴 = 𝐿1𝜃 

𝑥̇𝐴 = 𝐿1𝜃̇ 

𝑥𝐷 = 𝐿2𝜃 
 
Keeping in mind the forces shown in the diagram for the spring and damper are linear, so they will have to 
be converted to torques the EOM now becomes… 

𝐼𝑜𝜃̈ = −𝐶𝐿1
2𝜃̇ − 𝐾𝐿2

2 𝜃 
 

𝐼𝑜𝜃̈ + 𝐶𝐿1
2𝜃̇ + 𝐾𝐿2

2 𝜃 = 0 
 

0.5𝜃̈ + 10𝜃̇ + 250𝜃 = 0 
[1pt for newton’s; 1 pt for in correct form; 1 pt for correct derivation] 
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c) What are the undamped natural frequency ωn and damping ratio γ for this system?  [4] 
[2 pts each] 

ωn = √
𝐾𝐿2

2

𝐼𝑜
=  22.4

𝑟𝑎𝑑

𝑠
= 3.6𝐻𝑧 

 

𝛾 =
𝐶𝐿1

2

2√𝐾𝐿2
2𝐼𝑜

=0.45 

 

d) If the beam is lifted vertically up by 0.1m at point A and then released from rest determine 
the resulting transient angular displacement at B as a function of time, 𝜃𝑡𝑟(𝑡). What 
frequency will this system vibrate at after being released from rest? [8] 

 
The damping ratio is less than 1, so this is an underdamped system and the following equations apply from 
the formula sheet. 
 

𝑧(𝑡)𝑡𝑟   =   𝑒−𝛾𝜔𝑛𝑡[𝐵1 𝑐𝑜𝑠( 𝛺𝑛𝑡) +  𝐵2 𝑠𝑖𝑛( 𝛺𝑛𝑡)]  
 

𝑧̇(𝑡)𝑡𝑟 = 𝐵1𝑒−𝛾𝜔𝑛𝑡[−Ω𝑛𝑠𝑖𝑛(Ω𝑛𝑡) − 𝛾𝜔𝑛𝑐𝑜𝑠(Ω𝑛𝑡)] + 𝐵2𝑒−𝛾𝜔𝑛𝑡[Ω𝑛𝑐𝑜𝑠(Ω𝑛𝑡) − 𝛾𝜔𝑛𝑠𝑖𝑛(Ω𝑛𝑡)] 
 
Where the vibration frequency of the system will be: 

𝛺𝑛   =   𝜔𝑑 = 𝜔𝑛√1 − 𝛾2 = 20
𝑟𝑎𝑑

𝑠
= 3.2 𝐻𝑧 

 [2; 1 pt if not in Hz] 
 

For initial conditions where xo=0.1m at point A the rotation will be 𝜃𝑜 =
0.1

𝐿1
= 0.1 𝑟𝑎𝑑 and 𝑡 = 0. 

 
𝜃(𝑡)𝑡𝑟   = 0.1 =  1[𝐵1 ∗ 1 +   𝐵2 ∗ 0)]  

𝐵1 = 0.1  
[2] 

For initial conditions where 𝜃̇(0)𝑡𝑟 = 0 and 𝑡 = 0. 

 

𝜃̇(𝑡)𝑡𝑟 = 0 = 0.1[−𝛾𝜔𝑛] + 𝐵2[Ω𝑛] 

𝐵2 =
0.1𝛾𝜔𝑛

𝜔𝑛√1 − 𝛾2
= 0.05 

[3] 
Therefore  

𝜃(𝑡)𝑡𝑟 = 𝑒−10𝑡[0.1 𝑐𝑜𝑠( 20𝑡) +  0.05 𝑠𝑖𝑛( 20𝑡)]  
[1] 

 

A harmonic moment, 𝑀(𝑡) = 𝑀𝑒𝑖𝜔𝑡 = 10𝑒18.9𝑖𝑡, is now applied at point B as shown in 
Figure Q3.2 and the system allowed to come to steady state motion.  
 

 
FIGURE Q3.2 
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e) Derive the frequency response function, 
Θ∗

𝑀
, for the displacement of the beam under the excitation 

force 𝑀(𝑡) = 𝑀𝑒𝑖𝜔𝑡.                  [4] 
 
You can find the solution from the formula sheet or derive as follows: 
 
Start with the EOM for the new system (students might find it useful to update the FBD with the new Moment, M(t), but 
really it’s the EOM we’re concerned with so no points are assigned to the FBD). 

or       
 

𝐼𝑜𝜃̈ + 𝐶𝐿1
2𝜃̇ + 𝐾𝐿2

2 𝜃 = 𝑀(𝑡) 
[1] 

Keep in mind the substitutions 
𝑀(𝑡) = 𝑀𝑒𝑖𝜔𝑡 

𝜃(𝑡) = Θ∗𝑒𝑖𝜔𝑡 

𝜃̇(𝑡) = iωΘ∗𝑒𝑖𝜔𝑡  
𝜃̈(𝑡) = −𝜔2Θ∗𝑒𝑖𝜔𝑡  

 

−𝐼𝑜𝜔2Θ∗𝑒𝑖𝜔𝑡 + 𝐶𝐿1
2iωΘ∗𝑒𝑖𝜔𝑡  + 𝐾𝐿2

2 Θ∗𝑒𝑖𝜔𝑡 = 𝑀𝑒𝑖𝜔𝑡 

[1] 
Exponents will drop out, then rearrange for the FRF 
 

(−𝐼𝑜𝜔2 + 𝐶𝐿1
2iω + 𝐾𝐿2

2 )Θ∗ = 𝑀 
 

𝐻(𝜔) =
Θ∗

𝑀
=

1

(𝐾𝐿2
2 − 𝐼𝑜𝜔2 + 𝐶𝐿1

2iω )
=

1

(72.3 + 188.5i )
 

[2] 
 

f) Calculate the magnitude of the steady state response, |𝜃∗|, and its phase relative to the 
applied moment, 𝛼. E.g. determine 𝜃𝑠𝑠(𝑡) = |𝜃∗|𝑐𝑜𝑠(18.9𝑡 + 𝛼).    [4] 
 

Taking the FRF from the previous equation and solving for the magnitude of a complex number will result 
in: 
 

|Θ∗| = √
(𝑀)2

(𝐾𝐿2
2 − 𝐼𝑜𝜔2)2 + (𝐶𝐿1

2𝜔)2
= √

(10)2

(250 − 177.6)2 + (188.5)2
 

= √
(10)2

(72.3)2 + (188.5)2
= 0.05 𝑟𝑎𝑑 = 2.8° 

[2; rad or degrees accepted] 

𝛼 = 𝑡𝑎𝑛−1 (
−𝜔𝐶𝐿1

2

𝐾𝐿2
2 − 𝐼𝑜𝜔2

) = 𝑡𝑎𝑛−1 (
188.5

250 − 177.6
) = −1.2 𝑟𝑎𝑑 = −69° 

[2; rad or degrees accepted] 
 
You can get the same thing if you re-derive from scratch or use the formula sheet. Any of these are 
acceptable ways to get the same answer.  
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g) Determine the amplitude of force acting on the ground through the spring only.   [8] 

 
To do this you need a second equation for the force acting through the spring on the ground, q(t). 
 

𝑞(𝑡) = 𝐾𝐿2𝜃 
[1] 

Substitute in the following expressions to the EOM and q(t). 
 

𝑀(𝑡) = 𝑀𝑒𝑖𝜔𝑡 
𝑞(𝑡) = 𝑄∗𝑒𝑖𝜔𝑡 

𝜃(𝑡) = Θ∗𝑒𝑖𝜔𝑡 
𝜃̇(𝑡) = iωΘ∗𝑒𝑖𝜔𝑡  

𝜃̈(𝑡) = −𝜔2Θ∗𝑒𝑖𝜔𝑡  
[2] 

 
The exponential terms will nicely drop out, and you can rearrange the two equations to 
 

Θ∗ =
𝑀

(𝐾𝐿2
2−𝐼𝑜𝜔2)−𝑖𝐶𝐿1

2𝜔
  

 
𝑄∗ = 𝐾𝐿2Θ∗ 

 
Combining the two equations to eliminate Θ* results in a relationship for the transmitted force: 
 

𝑇𝐹 =
𝑄∗

𝑀
=

𝐾𝐿2

(𝐾𝐿2
2 − 𝐼𝑜𝜔2) + 𝑖𝐶𝐿1

2𝜔
 

[2] 
Find the magnitude of Q* 
 

|𝑄∗| = 𝑀√
(𝐾𝐿2)2

(𝐾𝐿2
2 − 𝐼𝑜𝜔2)2 + (𝐶𝐿1

2𝜔)2
= 10√

(250)2

(250 − 177.6)2 + (188.5)2
= 24.7𝑁 

[2] 
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h) If the system is experiencing unwanted levels of motion when operating at a given frequency, what 
is one way you might reduce the amplitude of motion at this frequency? What is one drawback of 
the method you have chosen?         [6] 

 
There are going to be many potential answers here, but the ones I would expect are: 

i. Change damping, stiffness and/or mass (this will depend where you are in relation to the natural 
frequency and since I don’t give that in the question anything goes really)  

ii. Lower the natural frequency to push the operating point further into the attenuation region. This 
could be accomplished by decreasing stiffness or increasing the mass of the beam. 

iii. Add some sort of controller and means to implement it. 
iv. Operate at another frequency where the motion will be attenuated. 

 
Drawbacks will depend on their answer above, and could be rather varied. So things to look out for are: 

- Acknowledging that changes to M, C and/or K could change the overall system and thus require 
further evaluation of the structure. For example, adding mass might result in the structure no longer 
supporting itself, or a softer spring might mean you exceed the springs static displacement kind of 
thing, or in the attenuation region higher damping results in greater displacements, etc.  

- Changes at one frequency might also affect performance at other frequencies. 
- Adding a controller can have a few drawbacks, but probably the most significant one is simply the 

increase in complexity and need for additional actuation elements (adding actuation then goes back 
to the structural integrity point as well). 

- You can’t always operate at another frequency. 
- Cost and/or complexity could increase. 
Many other options are possible as the question is purposefully opened ended. 


